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ABSTRACT

Mathematical models are widely used in ecology. Particularly in population ecology, predator-prey
models have a long history since their proposal in the 1920’s by mathematician Vitto Volterra, and
there are numerous studies on them with in-depth analysis of their properties. The Gause-type
of predator-prey models includes compartmentalized models in which biomass leaving the prey
compartment enters the predator compartment with some eventual conversion efficiency. Several
of these models consider ecological factors such as self-interference in prey or saturation of prey
consumption by predators. One of them is the well-known Rosenzweig-MacArthur model, which
incorporates the well-known logistic equation in the prey growth rate to include self-interference
ecological factor in this compartment and a functional response to represent predator saturation
factor. However, a type of predator-prey model that has been little studied in the literature is one
that assumes unrestricted growth in prey. A Gause-type predation model with Malthusian prey
growth and saturation in predators described by the Holling Type II functional response in hyperbolic
form is proposed and studied in this work. The main results obtained are presented: the existence
of a single positive equilibrium point (inside the first quadrant) that is unstable for all parameter
values and the non-existence of limit cycles in the system. These results suggest that prey self-
interference significantly influences the population dynamics predicted by the model, both in terms
of the stability of equilibrium points and the existence of fluctuations in population size for both
species. This assertion is based on a comparative study of the Rosenzweig-MacArthur model and
the one presented in this paper.
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