

$\mathcal A$ -character and point-wise countable families

Mitrofan Choban, Ekaterina Mihaylova¹, Zlatina Tsolova^{2*}

 ¹University of Architecture, Civil engineering and Geodesy 1, Hristo Smirnenski Str., Sofia 1164, Bulgaria
²University of Architecture, Civil engineering and Geodesy 1, Hristo Smirnenski Str., Sofia 1164, Bulgaria

ABSTRACT

The general concept of a metrizable family of subspaces of a topological space was introduced and applied to the problem of selections of multivalued mapping by M. Choban in [1]. Then in a similar context the concept of a family of subspaces with first axiom of countability was introduced and studied by E. Mihaylova in [3]. Families of p-subspaces and families of A(k)-spaces were defined and studied by M. Choban and E. Mihaylova in [2].

All considered spaces are assumed to be Hausdorff.

Fix a non-empty family \mathcal{A} of non-empty subspaces of a topological space X. A subset H of X is called an \mathcal{A} -subset of X if the set H is non-empty, and $H \subseteq L$ for some $L \in \mathcal{A}$. A subset H of X is called an \mathcal{A} -balanced subset of X if the set H is non-empty and $H \subseteq \cap \{L : L \in \mathcal{A}, H \cap L \neq \emptyset\}$.

Definition 1 The family γ of open subsets of X is called an A-base of the A-subset H in X if $H \subseteq \cap \{W : W \in \gamma\}$ and for every point $x \in H$ and every open subset U of X which contains H there exist an open subset V of X and $W \in \gamma$ such that $x \in V$ and $L \cap W \subseteq U$ for every $L \in A$ such that $L \cap V \neq \emptyset$. The A-character $\chi_X(H, A)$ of the A-subset H of the space X is the smallest cardinal of the form $|\gamma|$, where γ is an A-base of H.

Lemma 1 Let *H* be a compact *A*-subset of the space *X*. Then there exists an *A*-base γ of *H* such that:

1. $|\gamma| = \chi_X(H, \mathcal{A})$ and $W \cap W' \in \gamma$ for every $W, W' \in \gamma$; 2. For every open subset U of X which contains H there exist an open subset V of X and $W \in \gamma$ such that $H \subseteq V$ and $L \cap W \subseteq U$ for every $L \in \mathcal{A}$ such that $L \cap V \neq \emptyset$; 3. If $\chi_X(H, \mathcal{A})$ is the countable cardinal \aleph_0 , then there exists γ such that $\gamma = \{W_n : n \in \mathbb{N}\}$ and $W_{n+1} \subseteq W_n$ for every $n \in \mathbb{N}$.

^{*}Corresponding Author's E-mail: zltsolova_fgs@uacg.bg

Definition 2 A family \mathcal{A} of subspaces of a space X is of pointwise-countable type if for every point $x \in \cup \mathcal{A}$ there exists a compact \mathcal{A} -balanced subset F of X such that $x \in F$ and $\chi_X(F, \mathcal{A}) = \aleph_0$.

Theorem 1 Let $f : X \longrightarrow Y$ be a continuous open mapping of a space X onto a space Y, A be a family of subspaces of the space Y and $A^{-1} = \{f^{-1}(L) : L \in A\}$ be a family of pointwise-countable type of the space X. Then A is a family of pointwise-countable type of the space Y.

Keywords Character of a subspace · Point countable type space · Metrizable family of subspaces

References

- [1] M. Choban, Reduction theorems on the existence of continuous sections. Sections over subsets of factor spaces of topological groups, *Matem. Issledovania 8*, no. 4, 1973, Chişinev: Ştiinţa, 111–156.
- [2] M. Choban and E. Mihaylova, Special families of subspaces of topological spaces and their applications, *Topology and its Applications*, vol. 340, 2023.
- [3] E. P. Mihaylova, Open images of metrizable families, *Mathematica Balkanica*, 21, 3-4, (2007), 407–420.