

A MOVING-SERVER M/M/1 QUEUE WITH ZONE-INDUCED INTERRUPTIONS: ERGODIC CONDITION AND CLOSED-FORM STATIONARY DISTRIBUTION

Ilya V. Galagan^{1,2*}, Elmira Yu. Kalimulina^{1,2}

¹Lomonosov Moscow State University, Moscow, Russia ²Institute for Information Transmission Problems, RAS, Moscow, Russia

ABSTRACT

Motivation. Mobile edge platforms—high-speed trains, autonomous vessels, low-altitude drones—serve users only while inside radio-coverage zones; traffic queues up during shadowed stretches. Proper buffer sizing therefore demands a queueing model that couples mobility with intermittent service availability.

Model. Let $\{N_t\}_{t\geq 0}$ be the queue length and $S_t \in \{0,1\}$ indicate whether the server is inside a coverage zone (1) or not (0). Zone lengths are independent exponentials: $\operatorname{Exp}(\alpha)$ for coverage, $\operatorname{Exp}(\beta)$ for out-of-coverage; thus (N_t, S_t) is a continuous-time Markov chain with infinitesimal generator

$$Q = \begin{pmatrix} Q_{11} & Q_{10} \\ Q_{01} & Q_{00} \end{pmatrix}, \qquad Q_{ss'} = (q_{ss'}(n,m))_{n,m \ge 0}$$

where $q_{11}(n, n-1) = \mu$, $q_{11}(n, n+1) = \lambda$, $q_{10}(n, n) = \beta$, $q_{01}(n, n) = \alpha$, and all other transition rates are 0. The chain is stochastically equivalent to an M/M/1 queue whose server *breaks* with rate α and *repairs* with rate β .

Proposition 1 (Ergodicity). Define $\rho := \lambda(\alpha + \beta)/(\beta\mu)$. The chain is positive recurrent, i.e. the queue is ergodic, *iff*

$$\lambda < \frac{\beta \mu}{\alpha + \beta} \quad \Longleftrightarrow \quad 0 < \rho < 1.$$

Proof sketch. A Foster–Lyapunov function $V(n,s) = n + \gamma s$ with suitably chosen $\gamma > 0$ yields $\langle QV, (n,s) \rangle \leq -\varepsilon$ outside a finite set; thus the drift criterion holds.

Proposition 2 (Stationary Distribution). Assuming $0 < \rho < 1$, the joint stationary probabilities are

$$\pi_{n,1} = \frac{(\lambda+\beta)(1-\rho)}{\lambda+\beta+\alpha} \rho^n, \qquad \pi_{n,0} = \frac{\alpha(1-\rho)}{\lambda+\beta+\alpha} \rho^n, \quad n \ge 0,$$

so the marginal distribution of N is geometric with parameter $1 - \rho$. Expected queue length and waiting time follow in closed form:

$$\mathbb{E}[N] = \frac{\rho}{1-\rho}, \qquad \mathbb{E}[W] = \frac{\rho}{\mu(1-\rho)}.$$

The *physical* parameters—mean coverage length $1/\alpha$, mean shadow length $1/\beta$, and vehicle speed v—enter performance metrics only through α and β . Consequently, increasing coverage density (larger β) or vehicle speed (scaling both rates) widens the stability region linearly. Because probabilities decay geometrically, backlog targets such as $Pr\{N > k\} \le \varepsilon$ translate into explicit admissible arrival rates without simulation, enabling real-time buffer sizing for mobile edge platforms.

^{*}*Corresponding Author's E-mail: eyk@iitp.ru*