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ABSTRACT

The classical sequence of Fibonacci polynomials is a special case of Chebyshev polynomials and
has been studied in various fields. This class of polynomials, denoted by {Fn(x)}n≥0, is defined
in [2] by the initial conditions F0(x) = 0, F1(x) = 1, and the recurrence relation: Fn+1(x) =
xFn(x) + Fn−1(x), for n ≥ 1, as well as by the following identity:

Fn+1(x) = En(x,−1) =

∞∑
m=1

(
n−m

m

)
xn−2m = det


x −1 0 0 · · ·
1 x −1 0 · · ·
0 1 x −1 · · ·
...

...
. . . . . . −1

0 0 · · · 1 x


n×n

. (1)

The Identity (1) was derived from the second-type Dickson polynomials presented in [3]. In [2],
several identities for Fibonacci polynomials were obtained using matrix theory. Moreover, various
properties and generalizations of this well-known sequence can be found in the literature (see, for
example, [1], [5], [4], and [6]), along with numerous applications in algebra, analysis, combinatorics,
and matrix theory. For instance, in [5], a new procedure for the numerical solution of boundary
value problems involving expansions in Fibonacci polynomials was introduced. The fundamental
Fibonacci system, as introduced in [6], is defined by the recurrence relation

F (s)
n = F

(s)
n−1 + F

(s)
n−2 + · · ·+ F

(s)
n−r, n ≥ r, (2)

where the initial conditions are given by F
(s)
n = δs−1,n, for 0 ≤ n ≤ r − 1. The properties of the

fundamental Fibonacci system and the fundamental solution were established, and new identities for
generalized Fibonacci numbers were derived. Considering these previous results, this work focuses
on a generalization given by the following linear difference equation of order r ≥ 2:

F (s)
n (x) = xF

(s)
n−1(x) +

r−1∑
i=1

F
(s)
n−i−1(x), ∀n ≥ r, (3)

with initial conditions given by F
(s)
s−1(x) = 1, F

(s)
n (x) = 0, for all x ∈ R, 0 ≤ n ̸= s− 1 ≤ r − 1.

We refer to the class of polynomials defined by Equation (3) as the Fibonacci polynomials.
Our goal is to study Equation (3) through the fundamental Fibonacci system and Chebyshev poly-
nomials, that is, a determinantal approach to the terms of this polynomial sequence. This method
allows us to establish new properties and identities for this newly generalized class of polynomials.
Fibonacci polynomials, a special case of Chebyshev polynomials, can be expressed as determinants
of structured matrices, such as Jacobi or tridiagonal matrices. These representations make explicit
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the recurrence relations between the polynomials and facilitate the analysis of their properties, as we
will discuss next. Given the following result, several new identities can be derived.

Theorem 1 Let Fr be the fundamental system of Fibonacci polynomials. Then, for r ≥ 2, 1 ≤ s ≤
r − 1, and n ≥ 1, we have:

F
(s)
n+r−1(x) = det(Rn,s) = det



1 −1 0 0 0 · · · 0
1 x −1 0 0 · · · 0
1 1 x −1 0 · · · 0
...

...
. . .

. . .
. . . · · · 0

1 1 · · · 1
. . .

. . . 0

0 0 1 · · ·
. . . x −1

0 · · · 0 1 · · · 1 x


n×n

.

Rn,si1 =

{
1, if 1 ≤ i ≤ s,

0, otherwise.
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