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ABSTRACT

The sequence {Fn}n≥0 of Fibonacci numbers is defined recursively by the relation Fn = Fn−1 +
Fn−2 with F0 = F1 = 1. Among its interpretations, we can highlight that these numbers represent
the count of compositions of the integer n+ 1 with no part equal to 1 (see [2], Sequence A000045).
On the other hand, the Stirling numbers of the first kind S(n, k), 0 ≤ k ≤ n, determine the
number of permutations in the symmetric group Sn that decompose into exactly k cycles. Formulas
for S(n, k) in terms of partitions of a positive integer, cyclic types of a permutation, and Vieta’s
formula can be found, respectively, in the works of [3, 4] and [5].
In this work, we are interested in the non-homogeneous recurrence relation with variable coefficients
given by:
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where p(k)1,n(q) = 1 − q2 + q2n+2k+1, p(k)2,n(q) = q2 and with initial conditions P (k)
0 (q) = 1 and
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1 (q) = 1 + q2k+1. Note that if we consider only the homogeneous part of (1) with the initial

conditions, when q → 1, we obtain the sequence {Fn}n≥0 of Fibonacci numbers. Therefore, the
homogeneous part of (1) is a q-analog of the sequence Fn, as corroborated in [1].
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recursive process we find that Equation (1) can be represented in matrix form as
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where T (k)
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q (h) is the second order transition matrix, L(k)

q (n) is the companion

matrix associated to Equation (1) and Y (k)
0 is the vector of initial conditions. Thus, in order to find

explicit formulas for the entries of T (k)
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n (q, k) of Equation (1), which are defined, for s ∈ {0, 1}, as ψ(s)
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and, when n = 0, 1, we define ψ(s)
n = 1 for n = 1 − s and 0 otherwise. The matrix Φ

(s)
n−1 is the

tridiagonal matrix generated by the first n − 1 rows and columns of the infinite matrix Φ(s), given
by:
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Φ(s) =


p1+s,0(q) p2+s,1(q)

−1 p1,1(q) p2,2(q)
−1 p1,2(q) p2,3(q)

. . . . . . . . .

 ,

and with pm,n(q) = 0 whenever m > 2. Then, from the previous data, we are able to show that the
explicit determinantal expression for the sequence {P (k)

n (q)}n≥0 is given by:
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for all 0 ≤ k ≤ n. Thus, from the formulas for the homogeneous solution of (1) obtained in [1] and
the formulas for S(n, k) found in [3]-[5], we can establish an explicit combinatorial formula for the
sequence {P (k)

n (q)}n≥0.
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