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ABSTRACT

In the 17th century, Georg Christoph Lichtenberg (1742–1799), as a result of his research on Chinese
rings, introduced the following recurrence

Lin = 2n − 1− Lin−1 , (1)

for all integer n ≥ 1, and with initial values Li0 = 0 (see sequence A000975 in [8]). Hinz [5]
and Cerda-Morales [3] called the sequence of numbers {Lin}n≥o, the Lichtenberg numbers and
established the nonhomogeneous recurrence relation

Lin = Lin−1 + 2Lin−2 + 1 , (2)

for all integer n ≥ 2, with initial terms Li0 = 0 and Li1 = 1. Equation (2) defines the sequence
of Ernst numbers introduced by Soykan in cite soykan2022. For historical reasons, we will use the
name Lichtenberg numbers, according to the authors Hinz [5], Stockmeyer [6], and also Heeffer and
Hinz [7].
The Lichtenberg numbers are interesting because they are closely related to the well-known Jacob-
sthal numbers. The sequence of Jacobsthal numbers is denoted by {Jn}n≥0 and defined by the
recurrence relation Jn = Jn−1 + 2Jn−2 with initial values J0 = 0 and J1 = 1 ( see sequence
A001045 in [8]). In fact, Cerda-Morales [3] determined the identity

Lin =
Jn+2 − 1

2
. (3)

On the other hand, we highlight the work of Anatassov in [1, 2], who introduced a generalization of
s-Jacobsthal numbers, as follows

J(s,n) =
sn − (−1)n

s+ 1
, (4)

for every integer n ≥ 2, arbitrary real number s, and initial values J(s,0) = 0 and J(s,1) = 1. In
addition, we can define the s-Jacobsthal-Lucas numbers as follows

j(s,n) = sn + (−1)n, (5)

for n ≥ 2, and with j(s,0) = 2 and j(s,1) = 1.
Motivated by identities (3) and (4), our goal is to introducethe s-Lichtenberg and s-Lichtenberg-
Lucas numbers for some real s, and study some properties of this new sequence of numbers. More
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precisely, we give a recurrence for the s-Lichtenberg and s-Lichtenberg-Lucas numbers by using,
respectively, the s-Jacobsthal and s-Jacobsthal-Lucas numbers. We show a relation between the
s-Lichtenberg, s-Lichtenberg-Lucas, s-Jacobsthal and s-Jacobsthal-Lucas numbers and explore the
connection between the s-Lichtenberg numbers, the Lichtenberg numbers, and the Jacobsthal num-
bers establishing some properties related to the s-Lichtenberg and s-Lichtenberg-Lucas numbers.
In addition, Binet’s formulas are obtained. Finally, we examine some properties of these new se-
quences, including the classical identities.
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