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ABSTRACT

We consider undirected, weighted and connected graphs on N nodes, whose corresponding graph-
related matrices are symmetric. The graph G contains a set N of N nodes and a set L of L links. As
mentioned in my book [2], I believe that, after the adjacency matrix A and Laplacian matrix Q of a
graph G, the effective resistance matrix Ω with elements ωij is the third important matrix associated
with graph G. The effective resistance matrix Ω is closely related to the Laplacian matrix by

Ω = ζuT + uζT − 2Q† (1)

where u is the all-one vector, the vector ζ =
(
Q†

11, Q
†
22, . . . , Q

†
NN

)
and Q† is the pseudoinverse of

the Laplacian [3], [2, Secion 4.2]. The effective resistance matrix Ω is a distance matrix [2, art. 8].
Here, we explicitly express the eigenvectors v1, v2, . . . , vN and eigenvalues ρ1, ρ2, . . . , ρN of the
effective resistance matrix Ω in terms of the eigenvectors z1, z2, . . . , zN = u√

N
and eigenvalues

µ1 ≥ µ2 ≥ . . . ≥ µN = 0 of the possibly weighted, but symmetric Laplacian Q. We also deduce
the exact characteristic polynomial and thus improve on a famous interlacing result by Fiedler [1,
Corollary 6.2.9], [2, Theorem 33].
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