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ABSTRACT

In general relativity, a spacetime, denoted byM4 is viewed as a Lorentzian manifold equipped with a
Lorentzian metric g. This metric has a signature of (−,+,+,+), indicating the mixture of positive
and negative signs. It allows for the presence of a vector that is time-oriented and valid globally
throughout the spacetime.
A Lorentzian manifold M4 is called a perfect fluid spacetime [1], if the non-zero Ricci tensor Rij
satisfies

Rij = αgij + βAiAj

where α, β are scalar functions and Ai is the non-zero 1-form named as "the generator of the
manifold" and AiAi = −1.
For a perfect fluid spacetime, the energy momentum tensor Tij is given by [2]

Tij = (p+ σ)AiAj + pgij

where σ and p denote the energy density and the isotropic pressure, respectively and Ai is a non-
vanishing vector.
The Einstein field equations without cosmological constant are presented by

Rij −
R

2
gij = kTij

where R denotes the scalar curvature and k indicates the gravitational constant.
In modern cosmology, dark energy is considered as a candidate to accelerate the expansion of the
universe and the scalar functions σ and p are considered by an equation of state (EoS), p = p(σ, T0)
that regulates the quality of the ideal fluid by denoting T0 as the absolute temperature. If we take T0
as a constant, then the (EoS) is reduced to p = p(σ). Then, this spacetime is called isentropic [3].
From (EoS), a perfect fluid spacetime is referred as stiff matter if p = σ, dark matter era if p = −σ,
dust matter era if p = 0, the radiation era if p = σ

3 , cosmic walls if p = − 2σ
3 and strings if p = −3σ

([4]-[6]). If p
σ < − 1

3 then the universe represents accelerating phase, if −1 < p
σ < 0 then the

universe represents quintessence phase.
A generalization of Einstein manifolds is the generalized quasi-Einstein manifold ([7],[8]). The
Ricci tensor of a generalized quasi-Einstein manifold satisfies the following condition

Rij = αgij + βAiAj + γ(AiBj +AjBi)
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where γ is a scalar , Ai is unit a time-like vector and Bi is a unit space-like vector. Also, Ai and
Bi are orthogonal vectors. A Lorentzian manifold whose Ricci tensor satisfies the last equation is
called generalized quasi-Einstein spacetime.
In this paper, some special conditions in a generalized quasi-Einstein spacetime are considered.
Under some special conditions, the physical properties of these spacetimes are examined. Then, it is
shown that such a turns into a perfect fluid or static spacetime or a special type of product spacetime
under some assumptions.
In the last part of this study, the applications of the considered spacetime in general relativity are
discussed.
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